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Filters 

 9.1 Introduction 

Filters are networks that process signals in a frequency-dependent manner. The basic 

concept of a filter can be explained by examining the frequency dependent nature of the 

impedance of capacitors and inductors. 

 

Filters have many practical applications: 

1. A simple, single-pole, low-pass filter (the integrator) is often used to stabilize 

amplifiers by rolling off the gain at higher frequencies where excessive phase shift 

may cause oscillations. 

2. A simple, single-pole, high-pass filter can be used to block dc offset in high gain 

amplifiers or single supply circuits. 

3.  Filters can be used to separate signals, passing those of interest, and attenuating the 

unwanted frequencies. An example of this is a radio receiver, where the signal you 

wish to process is passed through, typically with gain, while attenuating the rest of the 

signals.  

4. In data conversion, filters are also used to eliminate the effects of aliases in A/D 

systems. They are used in reconstruction of the signal at the output of a D/A as well, 

eliminating the higher frequency components, such as the sampling frequency and its 

harmonics, thus smoothing the waveform. 

 
An ideal filter will have an amplitude response that is unity (or at a fixed gain) for the 

frequencies of interest (called the pass band) and zero everywhere else (called the stop 

band). The frequency at which the response changes from passband to stopband is 

referred to as the cutoff frequency. 

 

9.2 Types Of Filters 

9.2.1 There are many types of electronic filters and many ways that they can be classified. A 

filter's frequency selectivity is probably the most common method of classification. A filter 

can have a low pass, high pass, band pass, or band stop response, where each name indicates 

how a band of frequencies is affected as explained below: 

1. Low pass filter: In this filter, the low frequencies are in the pass band and the higher 

frequencies are in the stop band. An idealized low pass filter is shown in Figure 9.1(a). 
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2. High pass filter: in this filter, the low frequencies are in the stop-band, and the high 

frequencies are in the pass band. An idealized high pass filter is shown in Figure 

9.1(b). 

3. Band Pass Filter: If a high-pass filter and a low-pass filter are cascaded, a band pass 

filter is created. this filter passes a band of frequencies between a lower cutoff 

frequency, f l, and an upper cutoff frequency, f h. Frequencies below f l and above f h 

are in the stop band. An idealized band pass filter is shown in Figure 9.1(C). 

 

4. Band-Reject, Or Notch Filter (Band Stop): Here, the passbands include frequencies 

below f l and above f h. The band from f l to f h is in the stop band. Figure 9.1(D) 

shows a notch response. 

 

 

 

Figure 9.1: Idealized Filter Responses 

The idealized filters defined above, unfortunately, cannot be easily built. The transition from 

pass band to stop band will not be instantaneous, but instead there will be a transition region. 

Stop band attenuation will not be infinite. Figure (9.2) shows the practical(realistic) filters. 
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Figure 9.2: realistic Filter Responses 

 

 

9.2.2 Analog and Digital filter  

   Another means of classifying filters is by the implementation method used. Some filters 

will be built to filter analog signals using individual components mounted on circuit boards, 

while other filters might simply be part of a larger digital system which has other functions as 

well. 

1. Digital filters are implemented using a digital computer or special purpose digital 

hardware.  

2.   Analog filters may be classified as either passive or active and are usually 

implemented with R, L, and C components and operational amplifiers.  
 

 

9.3 Specifications of filters 

    There are two primary sets of specifications necessary to completely define a filter's 

response, and each of these can be provided in different ways.  

 The frequency specifications  used to describe the passband(s) and stopband(s) could 

be provided in hertz (Hz) or in radians/second (rad/sec).  

 

 The other major filter specifications are the gain characteristics of the passband(s) and 

stopband(s) of the filter response. A filter's gain is simply the ratio of the output signal 

level to the input signal level. If the filter's gain is greater than 1, then the output signal 

is larger than the input signal, while if the gain is less than 1, the output is smaller than 
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the input. In most filter applications, the gain response in the stopband is very small. 

For this reason, the gain is typically converted to decibels (dB) as indicated in (9.1). 

For example, a filter's passband gain response could be specified as 0.707 or as 

−3.0103 dB, while the stopband gain might be specified as 0.0001 or −80.0 dB. 
 

 

Gain(dB) = 20 log(gain)                                                         (9.1) 
 

As we can see, the values in decibels are more manageable for very small gains. Some filter 

designers prefer to use attenuation (or loss) values instead of gain values. Attenuation is 

simply the inverse of gain. For example, a filter with a gain of 1/2 at a particular frequency 

would have an attenuation of 2 at that frequency. If we express attenuation in decibels we 

will find that it is simply the negative of the gain in decibels as indicated in (9.2). Gain values 

expressed in decibels will be the standard quantities used as filter specifications, although the 

term attenuation (or loss) will be used occasionally when appropriate. 

 

 

Attn.(dB) = 20* log (1/gain ) = −20 *log(gain) = −gaindB             (9.2) 

 

 

The five parameters of a practical filter are defined in Figure 9.3, opposite. 

 

1. The cutoff frequency (Fc) is the frequency at which the filter response leaves the error 

band (or the −3 dB point for a Butterworth response filter).  

2. The stop band frequency (Fs) is the frequency at which the minimum attenuation in the 

stopband is reached.  

3. The pass band ripple (Amax) is the variation (error band) in the pass band response. 

4.  The minimum pass band attenuation (Amin) defines the minimum signal attenuation 

within the stop band.  

5. The steepness of the filter is defined as the order (n) of the filter. N is also the number of 

poles in the transfer function. A pole is a root of the denominator of the transfer function. 

Conversely, a zero is a root of the numerator of the transfer function. 
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Figure 9.3 filter parameters 

 Note that not all filters will have all these features 

9.4 FILTER TRANSFER FUNCTIONS 

 

An analog filter is a linear system that has an input and output signal. This system’s primary 

purpose is to change the frequency response characteristics of the input signal as it moves 

through the filter. The characteristics of this filter system could be studied in the time domain 

or the frequency domain. From a systems point of view, the impulse response h(t) could be 

used to describe the system in the time domain. The impulse response of a system is the 

output of a system that has had an impulse applied to the input. Of course, many systems 

would not be able to sustain an infinite spike (the impulse) being applied to the input of the 

system, but there are ways to determine h(t) without actually applying the impulse. A filter 

system can also be described in the frequency domain by using the transfer function H(s). 

The transfer function of the system can be determined by finding the Laplace transform of 

h(t). Figure 9.4 indicates that the filter system can be considered either in the time domain or 

in the frequency domain. However, the transfer function description is the predominant 

method used in filter design, and we will perform most of our filter design using it. 

 



Signal Processing                                                                                                                                                       Lec. 9 

 

Asst. Lec. Haraa Raheem Page 6 
 

 

 

 

Figure 9.4 The filter as a system 

9.4.1 Transfer Function Characterization 

 

The transfer function H(s) for a filter system can be characterized in a number of ways. As 

shown in (9.4), H(s) is typically represented as the ratio of two polynomials in s where in this 

case the numerator polynomial is order m and the denominator is a polynomial of order n. G 

represents an overall gain constant that can take on any value. 

 

 

 

Transfer function can be represented as: 

 

 

9.5 Analog Filter Design 

     The design of a digital filter usually begins with the choice of a CT transfer function H (s) 

: This approach is an historical artifact, owing to the fact that CT .filter design is a mature 

subject, thoroughly developed during the first half of the 20th century. As we will see, 

converting from CT to DT is a simple matter, so it is not necessary to reinvent DT filter 

theory from scratch. Most filter design is based on rational transfer functions. For analog 

filters, this is necessary because filters are built with electronic components: operational 

amplifiers, resistors, and capacitors. The physics of such devices dictate that circuits are 

governed by differential equations, which in turn lead to rational functions. For digital filters, 

rational functions correspond to difference equations, which may be solved recursively. let us 

review analog filter design using lowpass prototype transformation. This method converts the 

analog lowpass filter with a cutoff frequency of 1 radian per second, called the lowpass 
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prototype, into practical analog lowpass, highpass, bandpass, and bandstop filters with their 

frequency specifications. Let us consider the following first-order lowpass prototype: 

 

 

 

 

 

 

Figure 9.5Analog lowpass prototype transformation into a lowpass filter 

The lowpass prototype is a normalized lowpass filter with a normalized cutoff frequency of 

1. Applying the prototype transformation s/wc in Figure 9.4, we get an analog lowpass filter 

with a cutoff frequency of w as 

  

We can obtain the analog frequency response by substituting s=jw into above Equation, that 

is, 

 

The magnitude response is determined by 

 

 

This first-order prototype function is used here for an illustrative purpose. We will 

obtain general functions for Butterworth and Chebyshev lowpassprototypes in a later 

section. 
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The highpass, bandpass, and bandstop filters using the specified lowpass prototype 

transformation can be easily verified. We review them in Figures 9.6, 9.7, and 9.8, 

respectively. 

 The transformation from the lowpass prototype to the highpass filter HHP (s) with a 

cutoff frequency wc radians/second is given in Figure 9.6, where s = wc /s in the 

lowpass prototype transformation.  

 

 

 

 

 

 

 

 

 
 

 
F IGURE 9.6 Analog lowpass prototype transformation to the highpass filter. 
 

 The transformation of the lowpass prototype function to a bandpass filter with a center 

frequency wo, a lower cutoff frequency wl , and an upper cutoff frequency wh in the 

passband is depicted in Figure 9.7 𝒔 = (𝒔𝟐 + 𝒘𝟎
𝟐)/sW     is substituted into the lowpass 

prototype. As shown in Figure 9.7, w0 is the geometric center frequency, which is 

defined 
 

while the passband bandwidth is given by   W=wh-wl 

 

 

 

 

 

 

F IGURE 9.7 Analog lowpass prototype transformation to the bandpass filter 
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 the transformation from the lowpass prototype to a bandstop (band reject) filter is 

illustrated in Figure 9.8, with     𝒔 = 𝐬𝐖/(𝒔𝟐 + 𝒘𝟎
𝟐)   substituted into the lowpass 

prototype. Finally, the lowpass prototype transformations are summarized in Table 9.1. 

 

 

 

 

 

 

 

F IGURE 9.8 Analog lowpass prototype transformation to the bandpass filter. 

Example 1: Given a lowpass prototype 
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Determine each of the following analog filters and plot their magnitude responses from 0 to 

200 radians per second. 

1. The highpass filter with a cutoff frequency of 40 radians per second. 

2. The bandpass filter with a center frequency of 100 radians per second and bandwidth of 20 

radians per second. 

Solution: 

1. Applying the lowpass prototype transformation by substituting s= 40/s into the lowpass 

prototype, we have an analog highpass filter as 

 

 

 

 

 

 To transfer from a lowpass prototype to a bandpass or bandstop filter, the resultant 

order of the analog filter is twice that of the lowpass prototype order. 
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9.6 Analog Filter Approximation Functions 

      As indicated in the first section, an ideal filter is unattainable; the best we can do is to 

approximate it. There are a number of approximations we can use based on how we want to 

define “best.” In this section we discuss two methods of approximation, each using a slightly 

different definition. two sections are devoted to the major approximation methods used in 

analog filter design: the Butterworth and  Chebyshev In each of these sections we determine 

the order of the filter required given the filter’s specifications and the required normalized 

transfer function to satisfy the specifications.  
 

9.6.1 BUTTERWORTH NORMALIZED APPROXIMATION FUNCTIONS 

   The Butterworth approximation function is often called the maximally flat response 

because no other approximation has a smoother transition through the passband to the 

stopband. The phase response also is very smooth, which is important when considering 

distortion. The lowpass Butterworth polynomial has an all-pole transfer function with no 

finite zeros present. It is the approximation method of choice when low phase distortion and 

moderate selectivity are required.  A typical frequency response for a Butterworth low-pass 

filter of order n is shown in Fig. 9.9. 

  

 

 

Fig.9.9 Butterworth LPF c/cs 

Equation (9. 1) gives the Butterworth approximation’s magnitude response 

 

               (9. 1) 
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The Butterworth approximation has a number of interesting properties 

  

 

  

 

 

  

 

  

 

 

 

 |𝐻𝑛(𝑗Ω)|2 is monotonically decreasing function of Ω, it is also called maximally flat at 

the origin since all derivatives exist and are zero. As n → ∞ , we get ideal response. 

The normalized LP Butterworth is obtained when: 

 Ω
c 
= 1 rad / sec.    

 Substituting S = j Ω in eq. (9.1), and rearrange to get the LP Butterworth poles, then:  

            S = (−1) 
[(n +1) / 2 n ]
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9.6.1.2 Analog- to analog transformation  
To obtain Butterworth filters with cutoff frequencies other than 1 rad /sec. It is convenient to 

use 1 rad /sec. Butterworth filters as prototypes and apply analog-to-analog transformation 

(see Table (2)). The transformational method is not limited in its application to Butterworth 

filters.  

 

Table 2: analog to analog transformation  
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9.6.1.3  Butterworth Filter Specifications 

A Butterworth LPF Filter of order n is given by the following equation: 

 

(9. 2) 

 

where 

k
1
 is the pass-band gain 

Ωu  is the relative frequency of k
1
 

K
2 stop-band attenuation 

Ωr is the relative frequency of k
2
    As shown in table 2 

 

 

 

 

 

 

 

 

Example (1): design an analog Butterworth LPF that has a – 2 dB butter cutoff frequency of 

20 rad/sec. and at least 10 dB of attenuation at 30 rad/sec. 

 

Solution: k
1
= -2 dB, k

2 
= -10 dB, Ωu= 20 rad/sec., and Ω′r= 30 rad/sec 
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Ex 2: Determine the order of a lowpass Butterworth filter that has a -3-dB bandwidth 

of 500 Hz and an attenuation of 40 dB at 1000 Hz. 

 

Solution: k
1
= -3 dB, k

2 
= -40 dB, Ωu= 500 *2π  rad/sec., and Ω′r= 1000*2 π  rad/sec 

 

 

 

 

 

n=6.64≈ 7 

H.W : Find the order of an active low pass Butterworth filter whose specifications are given 

as: Amax = 0.5dB at a pass band frequency (ωp) of 200 radian/sec (31.8Hz), and Amin = 

20dB at a stop band frequency (ωs) of 800 radian/sec.  
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For DESIGNING Butterworth HPF: 

 

 

Ex 3:Derive the transfer function of a Butterworth HPF with magnitude /frequency response 

of  -3 dB at frequency of 2kHz and at least -15Db at a freq. of 1 kHz? 

Sol:  

 k
1
= -3 dB, k

2 
= -15 dB, Ωu= 2 *2π rad/sec., and Ω′r= 3*2π  rad/sec 

𝑛 = [
𝑙𝑜𝑔10{(100.3 − 1)/(101.5 − 1)

2𝑙𝑜𝑔10(
1
2

)
] = 2.47 ≈ 3                              

By using table 1 with n=3 

𝐻(𝑠) =
1

𝑠3 + 2𝑠2 + 2𝑠 + 1
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9.6.2 CHEBYSHEV NORMALIZED APPROXIMATION FUNCTIONS 

 

 Chebyshev filters are analog or digital filters having a steeper roll-off and 

more passband ripple (type I) or stopband ripple (type II) than Butterworth filters. Chebyshev 

filters have the property that they minimize the error between the idealized and the actual 

filter characteristic over the range of the filter but with ripples in the passband. This type of 

filter is named after Pafnuty Chebyshev because its mathematical characteristics are derived 

from Chebyshev polynomials. Because of the passband ripple inherent in Chebyshev filters, 

the ones that have a smoother response in the passband but a more irregular response in the 

stopband are preferred for some applications. 

There are two types of Chebyshev Filters:  

1- One containing a ripple in the pass-band (type 1).  

2- One containing a ripple in the stop-band (type 2).  

 

9.6.2.1 Type I Chebyshev Filters 

Type I Chebyshev Filters  are the most common types of Chebyshev Filters. The 

magnitude squared of the frequency response characteristics of a type I  Chebyshev 

Filters is given as. 

 

 

 

 

T
n
(Ω) is the nth order Chebyshev polynomial 

where T
0
(x) =1, and T

1
(x) = x as listed in Table (3). 

 𝜺𝟐  is a parameter chosen to provide the proper pass-band ripple. Can be obtained 

from tables and mathematically  

https://en.wikipedia.org/wiki/Analog_filter
https://en.wikipedia.org/wiki/Digital_filter
https://en.wikipedia.org/wiki/Roll-off
https://en.wikipedia.org/wiki/Passband
https://en.wikipedia.org/wiki/Ripple_(filters)
https://en.wikipedia.org/wiki/Stopband
https://en.wikipedia.org/wiki/Butterworth_filter
https://en.wikipedia.org/wiki/Pafnuty_Chebyshev
https://en.wikipedia.org/wiki/Chebyshev_polynomials
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Fig. (9.10) shows normalized Chebyshev Filters of both types. 

 

 

 

 

 

 

                          

Fig.( 9.10) Normalized Chebyshev filters of type 1 for (n odd), and (n even)  

9.6.2.1.a Design Equations of Chebyshev Filters:  

 

 

 

 

 

 

 

 

(n odd)  (n even) 

 

….9.3 

… 9.4.a 

…9.4.b 
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Table (4) gives V
n
(S) for n =1 to n =10 and ε corresponding to 0.5, 1, 2, and 3 dB ripples. 

Table (5) gives the zeros {poles of H
n
(S) } for the same n and ε. 

 

9.6.2.b Design steps of Chebeshev LPF, HPF, BPF, and BSF :  

1- Use the backward design equations from Table (2) to obtain normalized LPF requirements  

(Ω
r
). 

2-Calculate A using eq. (9.4a). 𝟐𝟎𝑳𝒐𝒈
𝟏

𝑨
= 𝑲𝟐= Stop band attenuation(dB)  

 𝟐𝟎𝑳𝒐𝒈
𝟏

√𝟏+𝜺𝟐
= 𝑲𝟏= pass band ripple. 

3-Calculate from eq. (9.4b), then apply eq.(9.3) to find the order n.  

4- Use Table (4) and Table (5) to find the Chebeshev Filter equation with order n.  

5- Apply LP → LP or HP or BP or BS transformation (Table (2)) and rearrange the equation  

obtained in step 4. 

 

Example (4): Design a Chebshev filter to satisfy the following specifications:  

1-Acceptable pass-band ripple of 2dB  

2-Cutoff frequency of 40 rad/sec.  

3- stop-band attenuation of 20 dB or more at 52 rad/sec.  

 

 

Type equation here.A = 10 

 

−2 = 20𝐿𝑜𝑔
1

√1+𝜀2
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    𝜀 =0.76 or from Table (4) and Table (5) ,     𝜀 =0.76478 

 

 

 

 

 

     g=13.01 

 

 

From Table (4) with n = 5 and ε = 2 dB = 0.76478 

 

 

Using Table (2) and applying LP → LP transformation, S→ S / 40, and rearranging the 

above equation: 

 

 

 

Notes:  
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1. Butterworth or maximally flat amplitude; as the order (n) is increased the 

response becomes flatter in the pass-band and the attenuation is greater in the 

stop-band.  

    2. Chebshev Filter has a sharper cutoff; i.e., a narrower transition band ( best 

amplitude response) than a Butterworth filter of the same order (n)  

3. Chebshev Filter provides poorest phase response (most nonlinear). The Butterworth 

filter compromise between amplitude and phase ( this is one of the reasons for its 

widespread popularity).  

Example(5):DeriveTransfer function of denormailized L.P.F. with magnitude/frequency 

response to 

1- 0.5db pass-band ripple  

2- stop-band attenuation of 20 dB or more at 10 Khz 

3- Cutoff frequency equal to 2 khz 

Sol: 

From table 4, when pass band ripple =0.5 db, 𝜀 =0.3493 

Or from  𝜀 = √100.05 − 1 = 0.3493  

From                                A=10 

 

 g=28.48 

𝛀𝒓 =
𝛀𝒓

¯

𝛀𝒖
=

𝟏𝟎

𝟐
= 𝟓  

𝒏 = [
𝒍𝒐𝒈𝟏𝟎

[𝟐𝟖.𝟒𝟖+√𝟐𝟖.𝟒𝟖𝟐−𝟏]

𝒍𝒐𝒈𝟏𝟎

[𝟓+√𝟐𝟒]
]= 𝟏. 𝟕𝟔 ≃ 𝟐, n is even 

From Table (4) with n = 2 and 0.5 db ripple( ε=0.3493) 
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𝐻𝑛(𝑠) =
𝑘𝑛

𝑉𝑛(𝑠)
  

 

For n even          𝑘𝑛 =
𝑏0

(1+𝜀2)1/2           from table 4 

 𝑘𝑛 =
1.5162

(1+0.34932)1/2 = 1.4313   

         𝐻2(𝑠) =
1.4313

1.4256𝑠+1.5162
= 

Using Table (2) and applying LP → LP transformation, S→ S / 2*2π, and rearranging the 

above equation: 

9.6.2.2-Type II Chebyshev filters 

Also known as inverse Chebyshev filters, the Type II Chebyshev filter type is less common 

because it does not roll off as fast as Type I, and requires more components. It has no ripple 

in the passband, but does have equiripple in the stopband  

 

 

 

 

 

 

 

 

 

 

Fig.( 9.11) afifth-order type II Chebyshev low-pass filter 

 

 

 

 

https://en.wikipedia.org/wiki/File:ChebyshevII_response.png
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